

Synthesized Signal Generator, 10 MHz to 70 GHz

SYNTHESIZED SIGNAL GENERATOR, 10 MHz to 70 GHz

v03.1213

Wide Frequency Range, 10 MHz to 70 GHz Signal Generator!

The HMC-T2270 is an easy to implement test equipment solution designed to fulfill your signal generation needs. Built on a foundation of high quality and market leading Hittite MMICs, the HMC-T2270 provides high output power, low harmonic levels and broad frequency range.

This compact and light weight signal generator also features USB, GPIB and Ethernet interfaces ensuring carefree integration within various test environments while improving overall productivity and equipment utilization.

Applications

- **♦ ATE**
- **♦** Test & Measurement
- **♦ R&D Laboratories**

Advantages

♦ Versatile: Simplifies Test Set-Ups

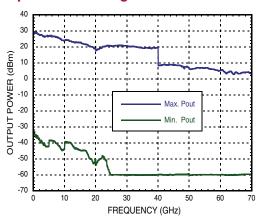
♦ Efficient: 500 µs Frequency Switching

♦ Reliable: Incorporates Hittite MMICs

♦ Flexible: Manual or Software Control

Via USB, GPIB or Ethernet

Performance


- ♦ High Output Power:
 - +29 dBm @ 1 GHz
 - +3.0 dBm @ 70 GHz
- ♦ Wide Frequency Range: 10 MHz to 70 GHz
- **♦** Excellent Phase Noise Performance:
 - -118 dBc/Hz @ 10 kHz Offset @ 1 GHz
 - -79 dBc/Hz @ 100 kHz Offset @ 67 GHz
- ♦ Integer Spurious:
 - < -65 dBc
- ♦ Power Resolution: 0.1 dB
- ♦ Frequency Resolution: 1 Hz

SYNTHESIZED SIGNAL GENERATOR, 10 MHz to 70 GHz

v03.1213

Output Power Range

Dynamic Range: > 60 dB Resolution: 0.1 dB

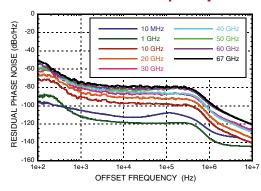
Power Accuracy:

 \pm 1 dB > 500 MHz \pm 2 dB \leq 500 MHz

± 2 dB < -20 dBm (All Frequencies)

RF OFF < -90 dBm

Harmonics


Frequency (GHz)	Sub- Harmonics (dBc)	2nd Harmonics (dBc)	3rd Harmonics (dBc)
0.01	-77	-38	-44
0.5	-78	-34	-55
1	-78	-39	-50
2	-78	-32	-40
5	-74	-37	-59
10	-58	-33	-64
15	-41	-40	-60
25	-71	-29	-
30	-70	-40	-
40	-50	-	-
50	-46	-	-
60	-50	-	-
70	-58	-	-

Output Power = +10 dBm

Output Power:

+10 dBm at or below 40 GHz See Max. Power above 40 GHz

SSB Phase Noise vs. Frequency

SSB Phase Noise (dBc/Hz)

Frequency	Offset From Carrier						
(GHz)	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	10 MHz
0.01	-86	-95	-104	-112	-107	-126	-140
1	-80	-90	-111	-118	-118	-134	-143
10	-63	-72	-90	-97	-98	-117	-141
20	-62	-66	-85	-90	-92	-111	-136
30	-54	-62	-80	-87	-87	-105	-127
40	-51	-60	-78	-84	-87	-105	-129
50	-45	-55	-75	-81	-80	-96	-120
60	-41	-54	-76	-81	-81	-98	-121
67	-46	-51	-74	-79	-79	-96	-120

Spurious

- < -65 dBc @ Integer Frequencies (See Table)
- < -63 dBc @ Fractional Frequencies <10 GHz
- < -57 dBc @ Fractional Frequencies 10-20 GHz
- < -52 dBc @ Fractional Frequencies 20-40 GHz
- < -46 dBc @ Fractional Frequencies > 40 GHz

Integer Frequencies *

Frequency Band (MHz)	Frequency Step Size (MHz)	
25 - 450	25	
450 - 625	6.25	
625 - 1250	12.5	
1250 - 2500	25	
2500 - 5000	50	
5000 - 10000	100	
10000 - 20000	200	
20000 - 40000	400	
40000 - 70000	800	
* All -thf		

^{*} All other frequencies are fractional.

www.valuetronics.com

SYNTHESIZED SIGNAL GENERATOR, 10 MHz to 70 GHz

v03.1213

General Specifications

Frequency:

Accuracy:

For < 2.5 GHz, Reference +0/-90 nHz For > 2.5 GHz, Reference +0/-2.88 uHz

Internal Reference: ±1.5 ppm

Resolution: 1 Hz Aging Rate: <1 ppm/yr

External Reference Input: 10 MHz (Sine Wave)
Internal Reference Output: 10 MHz (Square Wave)

Frequency Switching Speed: 500 µs

RF Output Power Change Versus Temperature:

Input / Output:

10 MHz REFOUT [1] 10 MHz REFIN [2] TRIGGER IN [3]: TTL TRIGGER OUT [3]: TTL

RS-232 (used for field upgrades)

Ethernet GPIB USB 2.0

RF Output 1.85mm Female

Maximum DC voltage applied to RF Output: 5 Volts

Power - AC:

100 to 240 VAC @ 50 to 60 Hz

Operating Temperature: (For indoor use only)

0 to 35 °C

Storage Temperature: -20 to 70 °C

Cooling: 2 Internal Fans Fan Noise: < 50 dBa

Mechanical Vibration & Shock:

MIL PRF-288000 Class 4, non operating

Compliance: CSA & CE

ECCN:

3A002.d.3.f

General Mechanical Characteristics

H: 76.2 mm (3 in)
W: 203 mm (8 in)
D: 305 mm (12 in)
Weight 3.7 kg (8.25 lbs)

Warranty: 1 Year Parts and Labor

^{[1] +10} dBm typ. into 50 Ohms; BNC Connector

^{[2] +5} dBm max., -5 dBm min., 50 Ohms; BNC Connector

^[3] The trigger input can be driven from either 3.3V or 5V sources for direct interface with TTL signal levels; BNC Connector

SYNTHESIZED SIGNAL GENERATOR, 10 MHz to 70 GHz

v03.1213

HMC-T2270 Rear Panel I/O Connections

Connectivity & Control

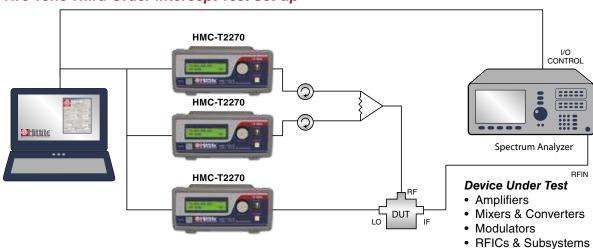
Its compact size, light weight, fast switching speed and USB, GBIP and Ethernet control interfaces support the standard SCPI command set ensuring smooth integration within all test environments, particularly those associated with automated test. An installation disk that accompanies each unit includes all the drivers required to remotely control the device as well as a user friendly GUI interface (right) compatible with a Windows XP®, Windows Vista® or Windows 7® or operating system. User control is facilitated via pull down menus that allow programming of single or swept modes in frequency or power. Integration of multiple units within a production test environment is easy, and affordable.

Remote Interface

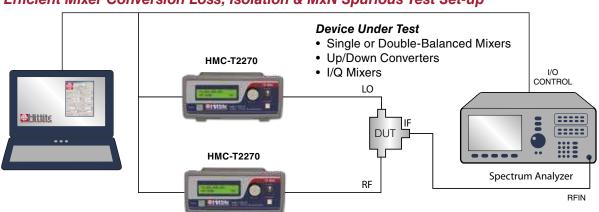
Hardware: USB (Windows XP®, Windows Vista®, Windows 7® Drivers Supplied), GPIB or Ethernet

Software: LabVIEW 2009 Driver **Frequency Switching Speed**:

500 us Typ. Local Interface


Front Panel Rotary Knob & Display

HMC-T2xxxGUI HMC-T2270#000004 REFRESH ✓ Remote Local Lockout RF Output On Step Frequency 70000.000000 0.000001 [MHz] 70000.000000 10.000000 Stop Start Power 3.0 Step 0.1 [dBm] -60.0 Start -60.0 Stop Continuous Trigger Count No Sweep Dwell Time 0.000025 Direction [Seconds] Slope Trigger Source EXTernal


HMC-T2100 Compatibility

To facilitate integration into existing HMC-T2100 applications, the HMC-T2270 has a HMC-T2100 compatibility mode. In this mode, the HMC-T2270 identifies itself as a HMC-T2100 so that the HMC-T2100 USB drivers will work for a HMC-T2270, and programs which use the *IDN? string will recognize a HMC-T2270 as a HMC-T2100. Frequency resolution, maximum and minimum values for power, and minimum sweep dwell time also change to match the HMC-T2100.

Two Tone Third Order Intercept Test Set-up

Efficient Mixer Conversion Loss, Isolation & MxN Spurious Test Set-up

SYNTHESIZED SIGNAL GENERATOR, 10 MHz to 70 GHz

v03.1213

HMC-T2270

Ordering Information

Model Number	Description	Price
HMC-T2270	Synthesized Signal Generator 10 MHz to 70 GHz	\$34,998.00

Includes 100 - 240V AC Power Supply and one Power Cord at no cost. Please specify your preferred power cord part number at time of ordering. (see "Power Cord" table)

Test Rack Mount Kit

Part Number	Description	Price		
HMC-RM02	Dual Rack Mounting Plate 19" 2u Chassis	\$385.00		
Statute we tan B				

Power Cord

Part Number	Region	
HMC-PC01	Continental Europe	\odot
HMC-PC02	United Kingdom	
HMC-PC03	China	Ø \$
HMC-PC04	Australia, New Zealand	Ø \$
HMC-PC05	North America	
HMC-PC06	South Africa / India	<u></u>
HMC-PC07	Switzerland	
HMC-PC08	Denmark	00
HMC-PC09	Israel	() I
HMC-PC10	Italy	000
HMC-PC11	Japan	